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Overview: A Balancing Act

• Physiological systems of animals operate in a 
fluid environment

• Relative concentrations of water and solutes 
must be maintained within fairly narrow limits

• Osmoregulation regulates solute 
concentrations and balances the gain and loss 
of water
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• Freshwater animals show adaptations that 
reduce water uptake and conserve solutes

• Desert and marine animals face desiccating 
environments that can quickly deplete body 
water

• Excretion gets rid of nitrogenous metabolites 
and other waste products



Fig. 44-1
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Concept 44.1: Osmoregulation balances the 
uptake and loss of water and solutes

• Osmoregulation is based largely on controlled 
movement of solutes between internal fluids 
and the external environment
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Osmosis and Osmolarity

• Cells require a balance between osmotic gain 
and loss of water

• Osmolarity, the solute concentration of a 
solution, determines the movement of water 
across a selectively permeable membrane

• If two solutions are isoosmotic, the movement 
of water is equal in both directions

• If two solutions differ in osmolarity, the net flow 
of water is from the hypoosmotic to the 
hyperosmotic solution 
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Osmotic Challenges

• Osmoconformers, consisting only of some 
marine animals, are isoosmotic with their 
surroundings and do not regulate their 
osmolarity

• Osmoregulators expend energy to control 
water uptake and loss in a hyperosmotic or 
hypoosmotic environment
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• Most animals are stenohaline; they cannot 
tolerate substantial changes in external 
osmolarity

• Euryhaline animals can survive large 
fluctuations in external osmolarity



Fig. 44-3
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Marine Animals

• Most marine invertebrates are osmoconformers

• Most marine vertebrates and some 
invertebrates are osmoregulators

• Marine bony fishes are hypoosmotic to sea 
water

• They lose water by osmosis and gain salt by 
diffusion and from food

• They balance water loss by drinking seawater 
and excreting salts



Fig. 44-4
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Freshwater Animals

• Freshwater animals constantly take in water by 
osmosis from their hypoosmotic environment

• They lose salts by diffusion and maintain water 
balance by excreting large amounts of dilute 
urine

• Salts lost by diffusion are replaced in foods and 
by uptake across the gills
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Animals That Live in Temporary Waters

• Some aquatic invertebrates in temporary ponds 
lose almost all their body water and survive in a 
dormant state

• This adaptation is called anhydrobiosis



Fig. 44-5
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Land Animals

• Land animals manage water budgets by 
drinking and eating moist foods and using 
metabolic water

• Desert animals get major water savings from 
simple anatomical features and behaviors such 
as a nocturnal life style
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Energetics of Osmoregulation

• Osmoregulators must expend energy to 
maintain osmotic gradients
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Transport Epithelia in Osmoregulation

• Animals regulate the composition of body fluid 
that bathes their cells

• Transport epithelia are specialized epithelial 
cells that regulate solute movement

• They are essential components of osmotic 
regulation and metabolic waste disposal

• They are arranged in complex tubular networks

• An example is in salt glands of marine birds, 
which remove excess sodium chloride from the 
blood



Fig. 44-7
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Concept 44.2: An animal’s nitrogenous wastes 
reflect its phylogeny and habitat

• The type and quantity of an animal’s waste 
products may greatly affect its water balance

• Among the most important wastes are 
nitrogenous breakdown products of proteins 
and nucleic acids

• Some animals convert toxic ammonia (NH3 ) to 
less toxic compounds prior to excretion
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Forms of Nitrogenous Wastes

• Different animals excrete nitrogenous wastes in 
different forms: ammonia, urea, or uric acid
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Ammonia

• Animals that excrete nitrogenous wastes as 
ammonia need lots of water

• They release ammonia across the whole body 
surface or through gills
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Urea

• The liver of mammals and most adult 
amphibians converts ammonia to less toxic 
urea

• The circulatory system carries urea to the 
kidneys, where it is excreted

• Conversion of ammonia to urea is energetically 
expensive; excretion of urea requires less 
water than ammonia
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Uric Acid

• Insects, land snails, and many reptiles, 
including birds, mainly excrete uric acid 

• Uric acid is largely insoluble in water and can 
be secreted as a paste with little water loss

• Uric acid is more energetically expensive to 
produce than urea
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The Influence of Evolution and Environment on 
Nitrogenous Wastes

• The kinds of nitrogenous wastes excreted 
depend on an animal’s evolutionary history and 
habitat

• The amount of nitrogenous waste is coupled to 
the animal’s energy budget
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Concept 44.3: Diverse excretory systems are 
variations on a tubular theme

• Excretory systems regulate solute movement 
between internal fluids and the external 
environment
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Excretory Processes

• Most excretory systems produce urine by 
refining a filtrate derived from body fluids

• Key functions of most excretory systems:

– Filtration: pressure-filtering of body fluids

– Reabsorption: reclaiming valuable solutes

– Secretion: adding toxins and other solutes 
from the body fluids to the filtrate

– Excretion: removing the filtrate from the 
system
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Capillary

Excretion

Secretion

Reabsorption

Excretory
tubule

Filtration

Filtrate
U

rine



Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings

Survey of Excretory Systems

• Systems that perform basic excretory functions 
vary widely among animal groups

• They usually involve a complex network of 
tubules
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Protonephridia

• A protonephridium is a network of dead-end 
tubules connected to external openings

• The smallest branches of the network are 
capped by a cellular unit called a flame bulb

• These tubules excrete a dilute fluid and 
function in osmoregulation
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Metanephridia

• Each segment of an earthworm has a pair of 
open-ended metanephridia

• Metanephridia consist of tubules that collect 
coelomic fluid and produce dilute urine for 
excretion
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Malpighian Tubules

• In insects and other terrestrial arthropods, 
Malpighian tubules remove nitrogenous 
wastes from hemolymph and function in 
osmoregulation

• Insects produce a relatively dry waste matter, 
an important adaptation to terrestrial life
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Kidneys

• Kidneys, the excretory organs of vertebrates, 
function in both excretion and osmoregulation
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Structure of the Mammalian Excretory System

• The mammalian excretory system centers on 
paired kidneys, which are also the principal site 
of water balance and salt regulation

• Each kidney is supplied with blood by a renal 
artery and drained by a renal vein

• Urine exits each kidney through a duct called 
the ureter

• Both ureters drain into a common urinary 
bladder, and urine is expelled through a 
urethra

Animation: Nephron IntroductionAnimation: Nephron Introduction
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• The mammalian kidney has two distinct regions: 
an outer renal cortex and an inner renal 
medulla
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• The nephron, the functional unit of the 
vertebrate kidney, consists of a single long 
tubule and a ball of capillaries called the 
glomerulus

• Bowman’s capsule surrounds and receives 
filtrate from the glomerulus
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Filtration of the Blood

• Filtration occurs as blood pressure forces fluid 
from the blood in the glomerulus into the lumen 
of Bowman’s capsule

• Filtration of small molecules is nonselective

• The filtrate contains salts, glucose, amino acids, 
vitamins, nitrogenous wastes, and other small 
molecules
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Pathway of the Filtrate

• From Bowman’s capsule, the filtrate passes 
through three regions of the nephron: the 
proximal tubule, the loop of Henle, and the 
distal tubule

• Fluid from several nephrons flows into a 
collecting duct, all of which lead to the renal 
pelvis, which is drained by the ureter

• Cortical nephrons are confined to the renal 
cortex, while juxtamedullary nephrons have 
loops of Henle that descend into the renal 
medulla
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Blood Vessels Associated with the Nephrons

• Each nephron is supplied with blood by an 
afferent arteriole, a branch of the renal artery 
that divides into the capillaries

• The capillaries converge as they leave the 
glomerulus, forming an efferent arteriole

• The vessels divide again, forming the 
peritubular capillaries, which surround the 
proximal and distal tubules
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• Vasa recta are capillaries that serve the loop 
of Henle

• The vasa recta and the loop of Henle function 
as a countercurrent system
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Concept 44.4: The nephron is organized for 
stepwise processing of blood filtrate

• The mammalian kidney conserves water by 
producing urine that is much more 
concentrated than body fluids
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From Blood Filtrate to Urine: A Closer Look

Proximal Tubule

• Reabsorption of ions, water, and nutrients 
takes place in the proximal tubule

• Molecules are transported actively and 
passively from the filtrate into the interstitial 
fluid and then capillaries

• Some toxic materials are secreted into the 
filtrate

• The filtrate volume decreases
Animation: BowmanAnimation: Bowman’’ss Capsule and Proximal TubuleCapsule and Proximal Tubule
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Descending Limb of the Loop of Henle

• Reabsorption of water continues through 
channels formed by aquaporin proteins

• Movement is driven by the high osmolarity of 
the interstitial fluid, which is hyperosmotic to 
the filtrate

• The filtrate becomes increasingly concentrated
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Ascending Limb of the Loop of Henle

• In the ascending limb of the loop of Henle, salt 
but not water is able to diffuse from the tubule 
into the interstitial fluid

• The filtrate becomes increasingly dilute
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Distal Tubule

• The distal tubule regulates the K+ and NaCl 
concentrations of body fluids

• The controlled movement of ions contributes to 
pH regulation

Animation: LoopAnimation: Loop of of HenleHenle and Distal Tubuleand Distal Tubule
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Collecting Duct

• The collecting duct carries filtrate through the 
medulla to the renal pelvis

• Water is lost as well as some salt and urea, 
and the filtrate becomes more concentrated

• Urine is hyperosmotic to body fluids

Animation: CollectingAnimation: Collecting DuctDuct
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Solute Gradients and Water Conservation

• Urine is much more concentrated than blood

• The cooperative action and precise 
arrangement of the loops of Henle and 
collecting ducts are largely responsible for the 
osmotic gradient that concentrates the urine

• NaCl and urea contribute to the osmolarity of 
the interstitial fluid, which causes reabsorption 
of water in the kidney and concentrates the 
urine
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The Two-Solute Model

• In the proximal tubule, filtrate volume 
decreases, but its osmolarity remains the same

• The countercurrent multiplier system 
involving the loop of Henle maintains a high 
salt concentration in the kidney

• This system allows the vasa recta to supply the 
kidney with nutrients, without interfering with 
the osmolarity gradient

• Considerable energy is expended to maintain 
the osmotic gradient between the medulla and 
cortex
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• The collecting duct conducts filtrate through the 
osmolarity gradient, and more water exits the 
filtrate by osmosis

• Urea diffuses out of the collecting duct as it 
traverses the inner medulla

• Urea and NaCl form the osmotic gradient that 
enables the kidney to produce urine that is 
hyperosmotic to the blood
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Adaptations of the Vertebrate Kidney to Diverse 
Environments

• The form and function of nephrons in various 
vertebrate classes are related to requirements 
for osmoregulation in the animal’s habitat
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Mammals

• The juxtamedullary nephron contributes to 
water conservation in terrestrial animals

• Mammals that inhabit dry environments have 
long loops of Henle, while those in fresh water 
have relatively short loops
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Birds and Other Reptiles

• Birds have shorter loops of Henle but conserve 
water by excreting uric acid instead of urea 

• Other reptiles have only cortical nephrons but 
also excrete nitrogenous waste as uric acid



Fig. 44-17
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Freshwater Fishes and Amphibians

• Freshwater fishes conserve salt in their distal 
tubules and excrete large volumes of dilute 
urine

• Kidney function in amphibians is similar to 
freshwater fishes

• Amphibians conserve water on land by 
reabsorbing water from the urinary bladder
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Marine Bony Fishes

• Marine bony fishes are hypoosmotic compared 
with their environment and excrete very little 
urine
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Concept 44.5: Hormonal circuits link kidney 
function, water balance, and blood pressure

• Mammals control the volume and osmolarity of 
urine

• The kidneys of the South American vampire 
bat can produce either very dilute or very 
concentrated urine

• This allows the bats to reduce their body 
weight rapidly or digest large amounts of 
protein while conserving water



Fig. 44-18
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Antidiuretic Hormone

• The osmolarity of the urine is regulated by 
nervous and hormonal control of water and salt 
reabsorption in the kidneys

• Antidiuretic hormone (ADH) increases water 
reabsorption in the distal tubules and collecting 
ducts of the kidney

• An increase in osmolarity triggers the release 
of ADH, which helps to conserve water

Animation: EffectAnimation: Effect of ADHof ADH
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• Mutation in ADH production causes severe 
dehydration and results in diabetes insipidus

• Alcohol is a diuretic as it inhibits the release of 
ADH
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Fig. 44-20b
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The Renin-Angiotensin-Aldosterone System

• The renin-angiotensin-aldosterone system 
(RAAS) is part of a complex feedback circuit 
that functions in homeostasis

• A drop in blood pressure near the glomerulus 
causes the juxtaglomerular apparatus (JGA) 
to release the enzyme renin

• Renin triggers the formation of the peptide 
angiotensin II
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• Angiotensin II 

– Raises blood pressure and decreases blood 
flow to the kidneys

– Stimulates the release of the hormone 
aldosterone, which increases blood volume 
and pressure
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Fig. 44-21-2

Renin

Distal
tubule

Juxtaglomerular
apparatus (JGA)

STIMULUS:
Low blood volume
or blood pressure

Homeostasis:
Blood pressure,

volume

Liver

Angiotensinogen

Angiotensin I

ACE

Angiotensin II



Fig. 44-21-3
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Homeostatic Regulation of the Kidney

• ADH and RAAS both increase water 
reabsorption, but only RAAS will respond to a 
decrease in blood volume

• Another hormone, atrial natriuretic peptide 
(ANP), opposes the RAAS

• ANP is released in response to an increase in 
blood volume and pressure and inhibits the 
release of renin
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Fig. 44-UN1b
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You should now be able to:

1. Distinguish between the following terms: 
isoosmotic, hyperosmotic, and hypoosmotic; 
osmoregulators and osmoconformers; 
stenohaline and euryhaline animals

2. Define osmoregulation, excretion, 
anhydrobiosis

3. Compare the osmoregulatory challenges of 
freshwater and marine animals

4. Describe some of the factors that affect the 
energetic cost of osmoregulation
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5. Describe and compare the protonephridial, 
metanephridial, and Malpighian tubule 
excretory systems

6. Using a diagram, identify and describe the 
function of each region of the nephron

7. Explain how the loop of Henle enhances 
water conservation

8. Describe the nervous and hormonal controls 
involved in the regulation of kidney function
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